A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil
نویسندگان
چکیده
Accurate excited-state quantum chemical calculations on 2-thiouracil, employing large active spaces and up to quadruple-ζ quality basis sets in multistate complete active space perturbation theory calculations, are reported. The results suggest that the main relaxation path for 2-thiouracil after photoexcitation should be S2 → S1 → T2 → T1, and that this relaxation occurs on a subpicosecond time scale. There are two deactivation pathways from the initially excited bright S2 state to S1, one of which is nearly barrierless and should promote ultrafast internal conversion. After relaxation to the S1 minimum, small singlet-triplet energy gaps and spin-orbit couplings of about 130 cm(-1) are expected to facilitate intersystem crossing to T2, from where very fast internal conversion to T1 occurs. An important finding is that 2-thiouracil shows strong pyramidalization at the carbon atom of the thiocarbonyl group in several excited states.
منابع مشابه
Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture
The deactivation mechanism after ultraviolet irradiation of 2-thiouracil has been investigated using nonadiabatic dynamics simulations at the MS-CASPT2 level of theory. It is found that after excitation the S2 quickly relaxes to S1, and from there intersystem crossing takes place to both T2 and T1 with a time constant of 400 fs and a triplet yield above 80%, in very good agreement with recent f...
متن کامل2-Thiouracil intersystem crossing photodynamics studied by wavelength-dependent photoelectron and transient absorption spectroscopies.
Single-atom substitution within a natural nucleobase-such as replacing oxygen by sulfur in uracil-can result in drastic changes in the relaxation dynamics after UV excitation. While the photodynamics of natural nucleobases like uracil are dominated by pathways along singlet excited states, the photodynamics of thiobases like 2-thiouracil populate the triplet manifold with near unity quantum yie...
متن کاملAb initio molecular dynamics relaxation and intersystem crossing mechanisms of 5-azacytosine.
The gas phase relaxation dynamics of photoexcited 5-azacytosine has been investigated by means of SHARC (surface-hopping including arbitrary couplings) molecular dynamics, based on accurate multireference electronic structure computations. Both singlet and triplet states were included in the simulations in order to investigate the different internal conversion and intersystem crossing pathways ...
متن کاملIncrease in the photoreactivity of uracil derivatives by doubling thionation.
The ability of 4-thiouracil to strongly absorb UVA radiation and to populate a reactive triplet state in high yield has enabled its use as a versatile photocrosslinker for nearly 50 years. In this contribution, we present a detailed spectroscopic and photochemical investigation of the 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil series in an effort to further advance this chemistry and to s...
متن کاملTime- and Wavelength-Resolved Delayed-Fluorescence Emission from Acridine Yellow in an Inhomogeneous Saccharide Glass
Multiwavelength time-resolved spectroscopy is employed to study the triplet-state photophysics of acridine yellow dissolved in a rigid saccharide glass. Activated reverse intersystem crossing from photoexcited triplet states to the fluorescent singlet state provides a temperaturedependent decay pathway of the triplet population. While a unimolecular relaxation of a homogeneous excited triplet p...
متن کامل